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Abstract

A taxonomy of constraints for semistructured data models
is presented. Several existing classes of constrains defined
for different database models, such as relational and object-
oriented, are analyzed in the context of semistructured data
model.

To capture dynamic aspects of consistency, data validity
constraints are introduced. The most important subclass of
data validity constraints, temporal constraints are examined
in more detail.

1 INTRODUCTION

Although the field of semistructured data is relatively new,
it has attracted many researches [10, 3, 16]. The number of
research topics has been discussed extensively including de-
velopment of data models and query languages for semistruc-
tured data [1, 9, 12], information extraction and integra-
tion [17, 21], web site construction and restructuring [22, 14],
etc.

Semistructured data models are now used as a proven tool
for specification and representation of information stored
in the frame of digital libraries. For example, XML lan-
guage [25, 5, 11] is rapidly gaining acceptance as a replace-
ment of HTML.

However, dynamic aspects have not been examined ex-
tensively. In particular, consistency issues for semistruc-
tured data did not attract much attention till now. The
consistency is especially important in the context of digital
libraries, which are meant as somehow controlled sources of
information rather than just large collections of data.

One of approaches to address consistency for semistruc-
tured data model is to adapt traditional concepts of database
consistency. For example, an adaptation of multilevel
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transaction model to semistructured environment was pro-
posed [18].

However, techniques from traditional databases does not
suit really well for the case semistructured data due to its
specifics. For example, used in relational DBMS consistency
constraints are associated with tables, that constitute the
data structure. But semistructured data has no clear struc-
ture.

Data model for semistructured data that allows partial
and inconsistent information was proposed in [23]. Authors
mostly concerned the case when inconsistency arose from
distribution of information about same real object among
several data sources. They applied the model to develop
manipulation language for such kind of data.

An interesting comparison of concept used in relational
databases and semistructured data may be found in [19].

We are looking for consistency framework for semistruc-
tured data. The notion of consistency is tightly bound to
semantics of constraints on the data (the satisfaction of all
constraints in DB will imply DB consistency). Therefore,
investigation of constrains that are applicable to semistruc-
tured data may be very useful in order to define consistency
framework.

There were several research papers on integrity constraints
on semistructured data [7, 6, 2]. However these papers in-
vestigated the question of constraint implication: given that
certain constraints are known to hold, does it follow that
some other constraints to be satisfied? A number of decid-
ability and undecidability results were established.

Constraints for semistructured data were also studied in
the [15]. The focus of that work was on verification of in-
tegrity constrains on web sites using declarative approach.

The major focus of this work is classification of types of
constraints which can be found in semistructured data. In
order to do this we are reusing constraints types from struc-
tured databases, such as relational and object-oriented [8].
Because semistructured data is generalization of structured
data and any structured data may be easily described as
semistructured it is interesting to see how constraints on
structured data will be reformulated in semistructured envi-
ronment.

We divide all constraints into two major groups by their
relationship with transactions:

• integrity constraints
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Constraints of this kind describes semantic integrity of
the data and should be preserved by transaction.

• data validity constraints

Such constraints describes conditions of validity of data.
Therefore transaction execution is affected by them.

These groups are considered in more details in following
sections.

2 CONSTRAINTS

Integrity constraints are constraints which should be pre-
served by (update) transactions. These constraints are im-
portant because they provide some form of semantic integrity
of the data.

Certain kinds of constraints found in structured databases
are also common in semistructured databases. However,
in standard database systems, constraints are typically ex-
pressed as part of the schema, but in semistructured data
there is no explicit schema.

We shall briefly review the forms in which constraints are
expressed in relational and object-oriented databases. Later,
we will show how these types of constraints are represented
in semistructured databases.

2.1 Constraints in Structured DBs

In structured databases, the schema serves for two purposes.
First, it describes the structure or type of the data; second,
it describes certain constraints. The boundary between what
is a type and what is a constraint is not always well-defined
and depends on the formulation of the type system. As a
practical distinction, the fact that a program does not violate
the type of a database can usually be checked statically by
analysis of the code of the program, while constraints are
usually checked dynamically when the database is updated.

2.1.1 Constraints in Relational Databases

In relational databases the type of relation describes the
structure of the tuples (the field names and their types),
while the constraint include assertion of the keys and inclu-
sion dependencies.

For example, a fragment of a typical relational schema
definition in a figure 1 tells us more than tuple types. First,
it tell us that there is a named component of the database,
Departments, which has this type. This is often called an
extent. Second, it imposes a key constraint so that no two
tuples have the same DeptId field. In the Employees relation
we see addition of a foreign key constraint: any DeptId field
that occur in the Employees relation must also occur in the
Departments relation.

2.1.2 Constraints in Object-Oriented Databases

In the object-oriented databases the story is essentially the
same as in relational ones with some additional complica-
tions [8].

Figure 2 shows an ODMG schema. In addition to object
type declarations it imposes some additional constraints:

create table Employees (

EmpId: integer,

EmpName: char(30),

DeptId: integer,

...

primary key(EmpId),

foreign key(DeptId)

references Departments(DeptId)

)

create table Departments (

DeptId: integer,

...

primary key(DeptId)

)

Figure 1: Sample relational schema

interface Publications

extent publication {

attribute String title;

attribute Date date;

relationship set<Author> auth

inverse Author::pub;

}

interface Author

extend author {

attribute String name;

attribute String address;

relationship set<Publication> pub

inverse Publication::auth;

}

Figure 2: Sample ODMG schema

1. The extent declaration defines two persistent variables
publication and author whose types are, respectively,
set<Publication> and set<Author>.
Whenever an instance of Publication or Author is cre-
ated, it is automatically inserted into the publication

or author set.

2. For any publication p, the set p.auth is a subset of the
set author. Similarly, for any author a, the set a.pub

is a subset of publication.

Such conditions are called inclusion constraints.

3. For any publication p, and for any author a in p.auth,
p is a member of a.pub. Similarly, for any author a,
and for any publication p in a.pub, a is a member of
p.auth.

Such conditions are called inverse relationships.

Note that these constraints are independent of each other.
None of them is a result of any subset of the others.
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Figure 3: Sample OEM data graph

2.2 Constraints in Semi-structured DBs

Semi-structured data is a generalization of structured data
in a sense that any structured data may be easily considered
as semi-structured ones. In order to fully represent schema
of structured data in semistructured data model we should
map existing integrity constraints too. In particular, this
means that we should be able to formulate constraints from
structured databases in terms of semistructured data model
in some generic fashion.

2.2.1 Type Constraints

In the light weight data models for semistructured data, such
as OEM [1], the data are represented as labeled directed
graph. In this graph only leaf nodes have values.

In our taxonomy type constraints are the constraints on
nodes, but not on the edges of data graph. The sample type
constraint is the “salary is a non-negative”.

Note, that semistructured data is unconstrained by any
type system or schema. As a consequence, the statement
like “age is an integer”, which is represented as a type in
structured databases, may only be described as type con-
straint in semistructured database.

From other side, the object boundaries are not well-
defined in semistructured data. Therefore, the statement
“any student must have age”, which is also represented as
type definition in structured databases, is not represented
as a type constraint.

Note, that some type constraints may be extracted from
the data (for example, DataGuides). These constraints may
be useful for query optimization purposes. However, they are
not obligatory and may lost validity with data changes. This
makes them useless from the point of view of consistency
framework. Due to this reason here and in following we will
assume that all constraints are explicitly specified.

2.2.2 Path Constraints

Unlike type constraints, path constraints are the restrictions
on the data graph structure. Figure 3 shows a sample data
graph. Lets see how constraints we have found in structured
databases are expressed in semistructured:

• Inclusion

Sample extent constraint is ”person who is enrolled to
the course must be a student”. By taking edge label as
predicates this can be stated as follows:

∀s (∃c (Courses(r, c) and Enrolled(c, s)) →
Students(r, s))

Here r denotes the root node of data tree, and variables
c, s range over vertices. This constraints states that any
vertex that is reached from root by following Courses
edge followed by an Enrolled edge can also be reached
from the root by following a Students edge.

• Inverse Relationship

With respect to our example data graph, the inverse
relationship between Taking and Enrolled is expressed
as:

∀s (Students(r, s) →
∀c (Taking(s, c) → Enrolled(c, s)))

∀c (Courses(r, c) →
∀s (Enrolled(c, s) → (Taking(s, c)))

The first constraints above states that for any student
s and any c, if c is reachable from the s by following the
Taking edge, then s is also reachable from c by follow-
ing Enrolled edge. Second constraints states similar
condition for any course s.

In general path constraint either have the form

∀x (α(r, x) → ∀y (β(x, y) → γ(x, y)))

or the form

∀x (α(r, x) → ∀y (β(x, y) → γ(y, x)))

where α(x, y), β(x, y) and γ(x, y) represent a path, i. e. a
sequence of edge labels, from node x to node y.

All constraints that we have so far encountered may be
expressed by constraints of the this class. Further general-
ization has sense only if we will find useful constraints that
do not fail into specified class.

2.2.3 Complex Constraints

In practice, most of real-world logical constraints on the data
do not fail into category of pure type or path constraints.
Indeed such constraints are represented as complex mix of
constraints of both kinds.

An example of such real-world constraint is the statement
“sum of ingredients should not exceed 100%”.

2.2.4 Constraints in XML

Recently, XML (eXtensible Markup Language [25]) has
emerged as a standard for data exchange on the World Wide
Web. While a XML-Schemas [11] may be imposed on an
XML document, it is not required, and XML data is use-
fully treated as semistructured data.

There are a number of proposals for a type systems
for constraining the structure of XML documents. At the
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present they are just type systems; they do not impose con-
straints in the sense we have described above.

For example, XML-Data [20] may be used to describe the
type of data. It is easy to imagine inverse and inclusion
constraints to be added to XML-Data in much the same
way that they have been expressed in object-oriented data
definition languages. Apart from XML-Link [26], which can
express simple co-reference constraints, there is nothing in
the current proposals for inclusion or path constraints.

3 DATA VALIDITY CONSTRAINTS

In this section we discuss other type of constraints – data
validity constraints. Unlike integrity constraints discussed in
previous section these constraints should not be preserved by
transactions. Indeed they impose some additional conditions
which affect execution of transactions.

Data validity constraints describe conditions of validity of
data. One of examples of data validity constraints is con-
fidence constraints. For example, staff and customers may
have different views of the same data.

However, it is impossible to classify all subtypes of data
validity constraints because the notion of validity of data is
application specific.

Here we mainly discuss temporal validity constraints. We
also show how generic data validity constraints can be de-
scribed in existing data models for semistructured data.

3.1 Temporal Validity Constraints

The example of loosing of temporal validity is data integra-
tion view. Data integration view — single view to info from
external semistructured sources. Because of no notifications
on updates in external sources, data in view may be obsolete
or contradictory. Similar problems can be found in:

• Client-pull caches

Web-caching provides an intermediate storage space be-
tween client and web server in order to reduce both the
latency and network traffic. As downside, client may
get obsolete information. To solve this in client-pull
kind of caches, client periodically checks whenever ex-
ternal sources are updated.

• Temporal data in real-time databases

In real-time databases both transactions and data may
have some validity intervals.

3.1.1 Temporal Consistency

The term of temporal consistency is come from Real-Time
DB systems [13, 24, 4] In such DB systems the value of ob-
jects must correctly reflect the state of environment. This
means that data in DB must be fresh and also must be tem-
porally related with each other. These requirements lead to
the notion of temporal consistency [27, 28] which consists of
two components:

• Absolute consistency
Each value of data item has some absolute validity in-
terval in which it is considered to be correct.

• Relative Consistency
Relationships among data items are essential for calcu-
lation of dataset validity interval.

More formally the relative validity interval is associated
with set of data items. The difference of timestamps of
each pair of data items should not exceed the value of
relative validity interval.

Data on highly dynamic web-sites (like stock rates) have
natural dependency on time. Therefore time constraints
for semistructured data becomes essential. Such constraints
can be expressed in pretty much similar way to Real-Time
databases. This means that absolute and relative constraints
can be associated with semistructured data.

3.2 How to Describe Validity Con-
straints in Existing Models

In structured databases constraints are mostly part of the
schema. But this is not the case with semistructured
databases because they have no schema. However, there
exist several known data models for semistructured data in
which some constraints can be easily described.

One of the models which can be used for this is DOEM [9].
DOEM extends OEM [1] with special annotations on edges
to record information about updates; in particular, the time
and kind of update. This permits a history of changes to a
semistructured data to be maintained.

The DOEM model allows to capture some semantics of rel-
ative temporal consistency by comparing timestamps which
are saved in annotations on edges. It also allows to speak
about temporal consistency under assumption that all data
is up to date (i.e. satisfy absolute consistency).

DOEM model is illustrated by example on Figure 4.
Yet one suitable model to describe validity constraints is

MOEM model [12], This model is extensible, semistructured
data model that generalizes existing lightweight semistruc-
tured models. In this model, each label is a set of descrip-
tive properties. A property is a kind of meta-data. Typical
properties are name of the edge and the level of security that
protects the edge, but any property can be used in a label
to describe the nodes that are reachable through that edge.

This model provides much better possibilities to capture
data validity constraints. We can easily describe absolute
validity interval just by adding the corresponding property
to the labels. The example of how temporal constraints can
be described in this model is shown on Figure 5.

4 CONCLUSION

In this paper we studied constraints that are meaningful
for semistructured data. Constraints are important because
they are essential part of consistency framework.

We have divided all constraints on data into two groups
— integrity constraints and data validity constraints.

Integrity constraints describes semantic integrity of the
data. Because transactions are intended to preserve integrity
of the data they should preserve constraints of this kind.

Among integrity constraints we distinguish type and path
constraints. Any real-world constraint is usually represented
by some mix of constraints of these types.
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Figure 4: Capturing data validity constraints in DOEM

Data validity constraints describes conditions of validity of
data. In order to produce consistent result transactions must
also take them into account. In other words, transaction
execution is affected by constraints of this kind.

It is impossible to make a complete taxonomy of data va-
lidity constraints because the notion of validity of data is
application specific. We specially distinguish one important
subclass of data validity constraints — temporal validity con-
straints.

In structured databases constraints are mostly part of
the schema. But this is not the case with semistructured
databases because they have no schema. However, there
were proposed several data models for semistructured data
in which some constraints can be easily described.
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