ANALYSIS AND COMPARISON OF SYSTEMS FOR HETEROGENEOUS INFORMATION RESOURCES INTEGRATION

Tenth All-Russian Science Conference **Digital Libraries:** Advanced Methods and Technologies, Digital Collections Dubna, Russia

> Session 12: Informational model mapping and resource integration October 9, 2008

Leonid Kalinichenko, Alexey Vovchenko Institute of Informatics Problems of RAS

TALK OUTLINE

o Information Integration Problem

- Heterogeneous Information Resources Integration
- Analyzed Integration Systems
- Important Integration Principles and Comparison Criteria
- Results

INFORMATION INTEGRATION PROBLEM

- The current period of IT development is characterized by an explosive process of information models creation.
- **Distributed infrastructures**: OMG, semanticWeb, SOA, digital library, information grid, ...
- **Information models**: data models, workflow models, process service composition models, semantic models
- Accumulation of based on such models information resources, the number of which grows exponentially
- o <u>Dr. Patrick Ziegler</u>
- <u>http://www.ifi.uzh.ch/~pziegler/IntegrationProjects.html</u>
- 183 Integration Projects

Types of Information Integration Systems

- Data warehousing
- Virtual Data Integration
- Message Mapping
- Object Relational Mapping
- Document Management
- Portal Management

DATA WAREHOUSING

- Data warehouse database that consolidates data from multiple sources
- Each resource may have a **DB schema** that **differs** from the **warehouse schema**. So **data has to be reshaped** into common warehouse schema
- Extract-Transform-Load (ETL) tools
 - cleansing operations
 - reshaping operations

VIRTUAL DATA INTEGRATION

- Gives the illusion that data sources have been integrated **without materializing** data
- Offers a **mediated schema** against which users can pose queries
- The **implementation**, often called a **query mediator system**, translates the **user's query** into **queries over the data sources** and integrates the result of those queries so that it appears to have come from a single integrated database
- Resources are **heterogeneous** in that they may use **different database** systems and structure the data using **different schemas**

Message Mapping

- Message-oriented middleware helps integrate independently developed applications by moving messages between them
- If a broker is avoided through all applications' use of the same protocol, then the product is called an **enterprise service bus**.
- If the focus is on defining and controlling the order in which each application is invoked, then the product is called a **workflow system**.

OBJECT RELATIONAL MAPPING

- Application **programs** today are typically written in an **object-oriented** language, but the **data** they access is usually stored in a **relational** database.
- Mapping applications to databases requires integration of the relational and application schemas
- **Differences** in **schema constructs** can make the mapping rather **complicated**
- Object-to-relational **mapper** offers a high-level **language** in which to **define mappings**
- **Resulting mappings** are then **compiled** into **programs** that **translate queries and updates** over the object-oriented interface into queries and updates on the relational database

DOCUMENT MANAGEMENT

- Much of the **information** is contained **in documents**
- To promote **collaboration** and avoid **duplicated work** in a large organization, this information needs to be integrated and published
- Integration may simply involve making the documents available or integration may mean combining information from these documents into a new document
- In some applications, it is useful to extract structured information from documents. The ability to **extract structured information** of this kind may also allow businesses to **integrate unstructured documents**

PORTAL MANAGEMENT

- One way to **integrate** related information is simply to **present** it all, side-by-side, **on the same screen**
- A portal is an type of integration in mind
- Portal design requires a mixture of content management (to deal with documents and databases) and user interaction technology (to present the information in useful and attractive ways)

TALK OUTLINE

- Information Integration Problem
- Heterogeneous Information Resources Integration
- Analyzed Integration Systems
- Important Integration Principles and Comparison Criteria
- Results

HETEROGENEOUS INFORMATION RESOURCES INTEGRATION

- Information **Resource driven** approach
 - moving from sources to problems (an integrated schema of multiple sources is created independently of a definition of specific application)
- is not scalable with respect to the number of sources
- does not make semantic integration of sources in a context of specific application possible
- does not lead to justifiable identification of sources relevant to specific problem,
- does not provide the required information system stability w.r.t. evolution of the observation sources (e.g., appearance of a new information source relevant to the problem lead to reconsideration of the integrated schema)

HETEROGENEOUS INFORMATION RESOURCES INTEGRATION (2)

• Problem driven approach

- moving from a problem to the sources (a description of an application subject domain (in terms of concepts, data structures, functions, processes) is created, into which sources relevant to the application are mapped)
- assumes creation of subject mediator that supports an interaction between an application and sources on the basis of the application subject domain definition
- removes the disadvantages mentioned for the approach driven by information sources

INTEGRATION USING VIEWS

• Global As View (GAV)

- According to GAV a global schema is defined in terms of the pre-selected sources
- Local As View (LAV)
 - Sources are defined as views over the mediator schema
- Both As View (BAV)
 - Based on the use of reversible schema transformation sequences. LAV and GAV view definitions can be fully driven from BAV

• GLAV

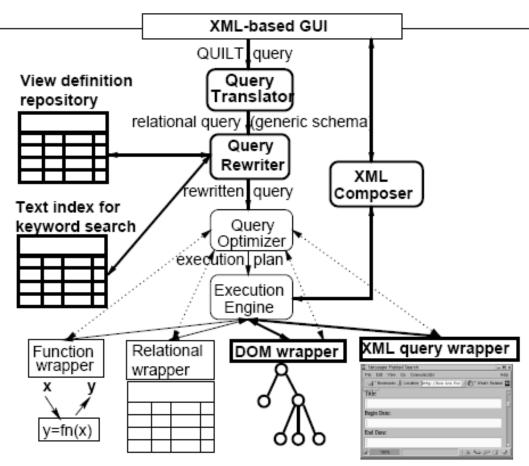
• Later a variation of LAV allowing the head of the LAV view definition rules to contain any source schemas query and hence is able to express the case where a source schemas are used to define the global schema constructs (GAV)

TALK OUTLINE

- Information Integration Problem
- Heterogeneous Information Resources Integration

o Analyzed Information Integration Systems

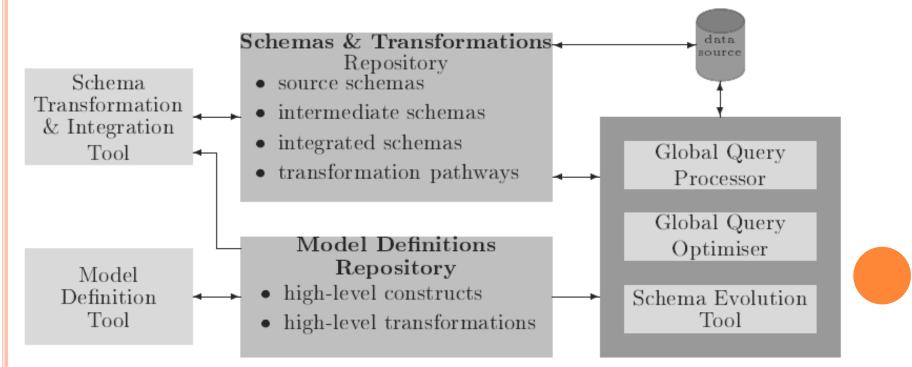
- Important Integration Principles and Comparison Criteria
- Results


INFORMATION INTEGRATION SYSTEMS

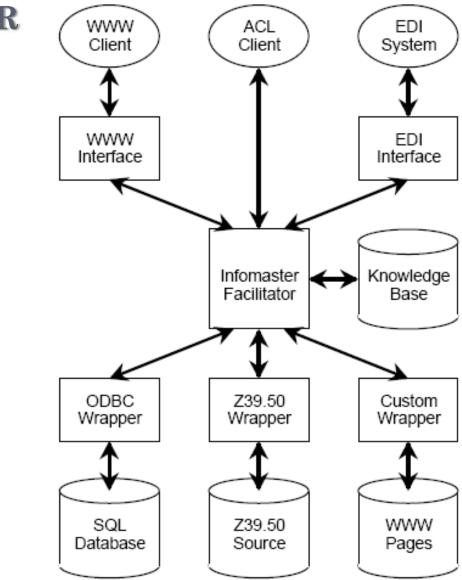
- o Agora
- o AutoMed
- o Infomaster
- PICSEL
- SIRUP
- o Information Manifold
- o MedMaker
- **o** SYNTHESIS

Agora

- Approach: LAV
- Canonical model: XML
- Query language: Xquery
- **Resources**: XML, Relational

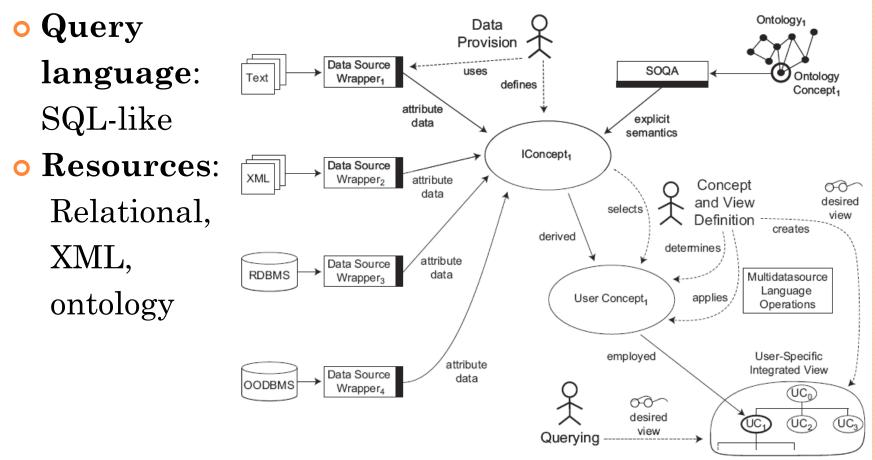


Implemented in LaSelect



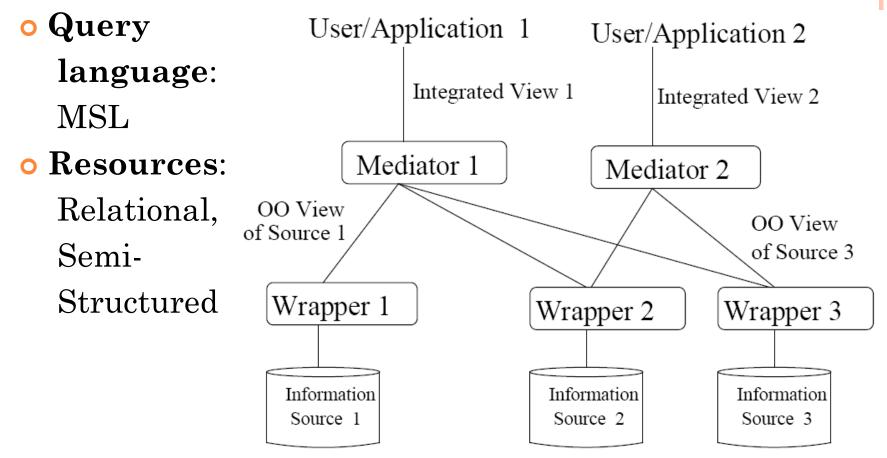
AUTOMED

- Approach: BAV
- Canonical model: HDM
- Query language: AIQL
- **Resources**: Relational, XML, flat files

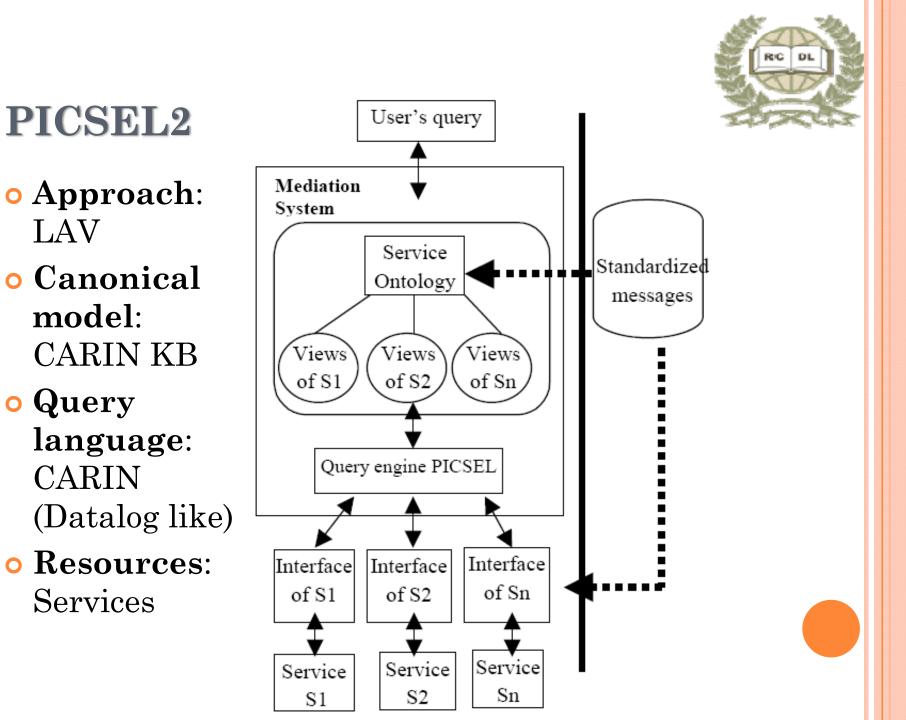

INFOMASTER

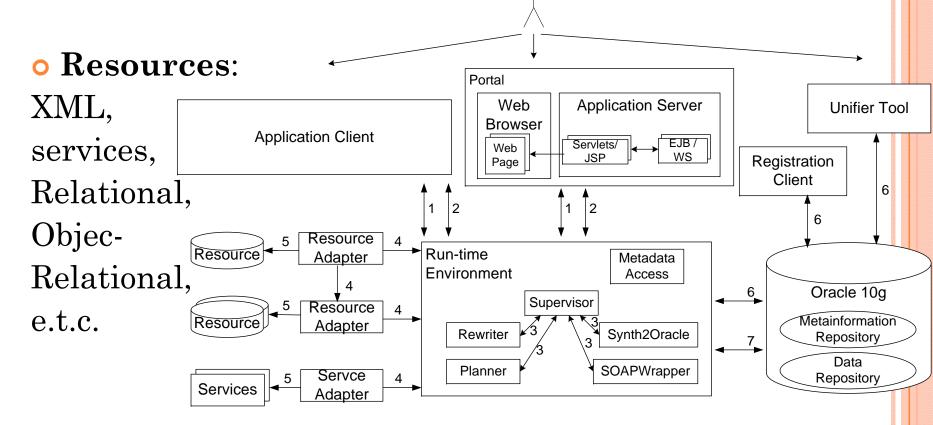
- Approach: LAV
- Canonical model: KIF
- Query language: KQML
- **Resources**: Relational, Z39.50, custom pages

SIRUP


- Approach: LAV
- Canonical model: ICONCEPT

MedMaker


- Approach: GAV
- Canonical model: OEM


INFORMATION MANIFOLD

- Approach: LAV
- Canonical model: CARIN-Classic
- Query language: Datalog-like
- **Resources**: XML, Relational, semi-structured, ...

SYNTHESIS

- Approach: LAV
- Canonical model: SYNTHESIS
- Query language: Syfs

TALK OUTLINE

- Information Integration Problem
- Heterogeneous Information Resources Integration
- Analyzed Information Integration Systems
- Important Integration Principles and Comparison Criteria
- Results

IMPORTANT INTEGRATION PRINCIPLES

- ASME Criteria
 - Abstraction
 - Selection
 - Modeling
 - Explicit Semantic
- Principles
 - Integration Approach
 - Extensible Canonical Informational Model
 - Semantic Schema Matching
 - Problem solving specification

ASME CRITERIA

- Abstraction refers to shielding users from lowlevel heterogeneities and underlying data sources
- Selection means the possibility of user-specific selection of data and data sources for individual integration
- **Modeling** corresponds to the availability of means to incorporate user-specific ways to perceive a domain of interest for which integrated data is desired in the process of data integration
- **Explicit semantics** refers to means for explicitly representing the real-world semantics of data.

INTEGRATION PRINCIPLES

o Integration Approach

- LAV removes the disadvantages of GAV
- Abstraction + Modeling = Approach (LAV, GAV, ...)
- Criteria Approach ("A")

• Extensible Canonical Informational Model

- Resources are heterogeneous, so the unification of resources models in the frame of some unifying information model called *canonical* is required
- Unification requires a technique of matching the specifications of various resources
- **Refinement relation**: It is said that specification A refines specification D, if it is possible to use A instead of D so that the user of D does not notice this substitution
- Criteria **Unification** ("U")
- Criteria **Selection** ("S")

INTEGRATION PRINCIPLES (2)

o Semantic Schema Matching

- Resource Registration require metadata (ontology)
- Criteria **Explicit Semantic** ("E")

o Problem solving specification

- Application domain specification includes: concepts, data structures, **functions**, processes
- Criteria **Functionality** ("F")
- Architecture Extensibility
- Criteria **Hybrid** ("H")
- User Friendly Integration Tools Availability
- Criteria **Tools** ("T")

COMPARISON CRITERIA

• AUSEFHT

- Approach
- Unification
- Selection
- **E**xplicit Semantic
- **F**unctionality
- **H**ybrid
- Tools

RESULTS

System	Α	U	S	Ε	F	Н	Т
Agora	LAV	No	No	No	No	No	Yes
AutoMed	BAV	Yes	No	Partially	No	Yes	Yes
Infomaster	LAV	No	No	No	No	No	No
SYNTHESIS	GLAV	Yes	Yes	Yes	Yes	Yes	Yes
PICSEL	LAV	No	Yes	Yes	Yes	No	Yes
SIRUP	LAV	No	Yes	Yes	No	Yes	Yes
Information	LAV	No	No	No	No	No	Yes
Manifold							
MedMaker	GAV	No	Yes	Partially	No	No	Yes

CONCLUSION

- **SYNTHESIS** ex facte Excellent Project
- **MedMaker** is interesting, cause automatic mediator generation
- **AutoMed** is interesting, cause BAV views, and their transformation into LAV or GAV views. HDM, model mappings (Relational, XML, ER, UML, ORM), inter model transformation.
- **SIRUP** ontology oriented approach. AIQL query.
- **PICSEL** service integration oriented approach.

- Criteria must be wider
- More projects must be analyzed